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FIG. 1

GENERATE A FIRST DENSITY MODEL THAT APPROXIMATES
VALUE DENSITIES IN A SET OF DATA
100

SELECT A FUNCTIONAL COMPONENT OF THE FIRST DENSITY
MODEL BASED ON HOW MUCH THE FUNCTIONAL COMPONENT
CONTRIBUTES TO HOW WELL THE DENSITY MODEL
APPROXIMATES THE VALUE DENSITIES IN THE SET OF DATA

102

VARY THE SELECTED FUNCTIONAL COMPONENT
104

USE THE SELECTED FUNCTIONAL COMPONENT AND THE
VARIED COMPONENT AS SEED COMPONENTS TO GENERATE A
SECOND DENSITY MODEL THAT INCLUDES AT LEAST ONE MORE
FUNCTIONAL COMPONENT THAN THE FIRST DENSITY MODEL
106

STORE, IN ASSOCIATION WITH THE SET OF DATA, A RESULTING
DENSITY MODEL THAT IS GENERATED BASED ON THE SECOND
DENSITY MODEL
108
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APPROXIMATING VALUE DENSITIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the patent application Ser.
No. 13/764,621, issued as U.S. Pat. No. 9,110,949, also filed
on Feb. 11, 2013, the entire contents of which is hereby
incorporated by reference as if fully set forth herein. This
application is also related to the patent application Ser. No.
13/764,658, issued as U.S. Pat. No. 9,135,280, also filed on
Feb. 11, 2013, the entire contents of which is hereby
incorporated by reference as if fully set forth herein.

FIELD OF THE INVENTION

The present invention relates to approximating value
densities in data.

BACKGROUND

Many businesses live or die based on the efficiency and
accuracy by which they can store, retrieve, process, and/or
analyze data. “Data,” as used herein, is digital information
that is electronically stored on storage device(s). Data may
be maintained on an individual storage device, such as a
local hard disk or solid state drive, a CD-ROM, or a memory
module. Alternatively, data may be distributed over multiple
storage devices, such as storage devices that are working
together to provide a cloud storage service or storage
devices that are operating separately to store subsets of the
data. One or more database servers may operate in parallel
to provide read and/or write access to the data. Large sets of
data, whether stored on one device or distributed among
many devices, may consume a significant amount of storage
space and/or processor time to store, retrieve, process,
and/or analyze.

Data may be described in terms of fields and values.
“Fields,” as used herein, refer to containers or labels that
provide contexts. “Values,” as used herein, refer to infor-
mation that is stored according to or in association with the
contexts. For example, a single table may have many
different columns that provide contexts for the values that
are stored in the columns. The different columns may store
different sets of data having different contexts, and the
different sets of data may or may not be of different data
types. In another example, a single document may have
many attributes and/or elements that provide contexts for the
values that are nested in the attributes and/or elements.
Elements or attributes that share the same name, path, or
other context may collectively store a set of data that shares
the context. Different elements or attributes may store dif-
ferent sets of data having different contexts, and the different
sets of data may or may not be of different data types.

To alleviate some of the overhead for storing, retrieving,
processing, and/or analyzing large sets of data, some com-
puter systems utilize metadata that is created and stored in
association with the sets of data. “Metadata,” as used herein,
is data that describes other data. Metadata may describe data
in a manner that allows the described data to be stored,
retrieved, processed, and/or analyzed more efficiently or
more accurately. For example, metadata for a given set of
data may include a mean, median, mode, minimum, and/or
maximum of the given set of data, such that these value(s)
may be quickly retrieved without being recalculated each
time the set of data is accessed. The metadata may be used
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to plan for data processing such that a data processor can
effectively allocate resources for the data processing.

General statistics such as the mean, median, mode, mini-
mum, or maximum value(s) may be helpful when storing,
retrieving, processing, and/or analyzing a set of data. How-
ever, these general statistics are not always helpful for
predicting whether a non-uniform set of data has specific
values.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any
of the approaches described in this section qualify as prior
art merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates an example process for generating a new
density model by varying a component of an existing density
model.

FIG. 2 illustrates an example system for generating den-
sity models for datasets.

FIG. 3 illustrates an example computer system for per-
forming various techniques described herein, such as the
example process of FIG. 2.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

General Overview

Various example machine-implemented methods, spe-
cially configured machines, and stored machine instructions
are provided herein for approximating value densities in
data. Machines may be specially configured with logic
comprising a combination of stored instructions, hard-wired
instructions, and hardware including a processor for per-
forming processes that include approximating value densi-
ties in data. Density modeling logic operating on computing
device(s) generates density models to approximate the value
densities. While generating a resulting density model to
approximate the value densities, in a component selection
phase, the density modeling logic selects a functional com-
ponent of a first model to vary based at least in part on how
much the functional component contributes to how well the
first model approximates the value densities. For example,
the functional component may be selected based at least in
part on how much the functional component contributes to
a likelihood or log likelihood that the values are explained
by the first model.

After adding a variation of the selected functional com-
ponent to the first model in the component selection phase,
the density modeling logic uses at least the selected func-
tional component and the variation as seed components in an
optimization phase that determines adjusted functional com-
ponents of a second model by iteratively determining, in an
expectation step of the optimization phase, how much the
seed components contribute to how well the second model
explains the values, and, in a maximization step of the
optimization phase, updated seed components, optionally to
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be used in further iterations of the optimization phase, based
at least in part on how much of the values are attributable to
the seed components. The expectation step may include
determining how much the seed components contribute to a
likelihood or log likelihood that the values are explained by
the second model. The expectation step and maximization
step may be iteratively performed multiple times in the
optimization phase until the second model of functional
components is determined.

After the optimization phase, in a model evaluation phase,
the density modeling logic may evaluate the second model
and determine whether or not to add additional functional
components to the second model in an additional component
selection phase or to keep the second model or the first
model as a final model. If an additional component is added,
the additional component selection phase is followed by an
additional optimization phase and an additional model
evaluation phase. The process may continue iteratively until
a resulting model from an additional optimization phase is
retained as the final model.

The density modeling logic may determine whether or not
to add more components or vary the selected component
based at least in part on whether the likelihood or log
likelihood that the values are explained by the second model
is at least a threshold amount better than the likelihood or log
likelihood that the values are explained by the first model. If
varying a selected functional component does not provide a
significantly better likelihood or log likelihood, then other
functional components of the first model may be selected to
vary. Up to a threshold number of other functional compo-
nents of the first model may be selected to vary. If none of
the threshold number of other functional components
improve the likelihood or log likelihood of the second model
significantly beyond that of the first model, then the first
model or any of the second models may be used as the final
model that represents the set of data. In one embodiment, if
multiple models are similar in the quality that they approxi-
mate the set of data, the smallest of the similar models is
retained as the final model.

When evaluating how much the seed components con-
tribute to a likelihood or log likelihood that the values are
explained by the second model, the likelihood or log like-
lihood may be evaluated relative how much other functional
components contribute to the likelihood or log likelihood
that the values are explained by the second model. For
example, the likelihood or log likelihood that the values are
explained by a component of the second model may be
evaluated and compared with likelihoods that the values are
explained by other components of the second model with the
assumption that the values are explained by the second
model.

The techniques described herein may be implemented as
method(s) that are performed by physical computing
device(s); as one or more non-transitory computer-readable
storage media storing instructions which, when executed by
computing device(s), cause performance of the method(s);
or, as physical computing device(s) that are specially con-
figured with a combination of hardware and software that
causes performance of the method(s).

FIG. 1 illustrates an example process for generating a new
density model by varying a component of an existing density
model. The example steps may be performed by density
modeling logic operated on computing device(s). In step
100, the density modeling logic generates a first density
model that approximates value densities in a set of data. In
step 102, the density modeling logic selects a functional
component of the first density model based on how much the
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functional component contributes to how well the density
model approximates the value densities in the set of data.
The density modeling logic then varies the selected func-
tional component in step 104, and, in step 106, the density
modeling logic uses the selected functional component and
the varied component as seed components to generate a
second density model that includes at least one more func-
tional component than the first density model. A resulting
density model that is generated based on the second density
model is stored, in step 108, in association with the set of
data.

FIG. 2 illustrates an example system for generating den-
sity models for datasets. As shown, density modeling com-
puter system(s) 200 include density modeling logic 202.
Density modeling logic 202 includes a modeling request
interface 204 for receiving requests for new density models
to represent sets of data. Density modeling logic 202 also
includes data preparation logic for preparing the sets of data
to be modeled. Expectation logic 208 and maximization
logic 210 function to generate adjusted component values
based on seed component value(s) that represent the data.
Convergence checking logic 212 checks to see whether the
expectation maximization routine has converged to stable
adjusted components. If not, convergence checking logic
212 triggers a further iteration of the expectation maximi-
zation routine.

If the expectation maximization routine has converged to
stable adjusted components, convergence checking logic
212 sends an adjusted model to model evaluation logic 214.
Model evaluation logic 214 may return the adjusted model
as a resulting model to modeling request interface 204 if the
adjusted model has a maximum number of components.
Model evaluation logic 214 may also return a resulting
model if the adjusted model does not represent a set of data
significantly better than a previous model analyzed by model
evaluation logic 214. Model evaluation logic 214 may cause
a component to be added by component adding logic 216 if
the adjusted model represents the set of data significantly
better than the previous model but does not yet have the
maximum number of components. Component adding logic
216 varies a weakest component of the adjusted model and
causes at least the varied component to be a seed value for
a further expectation maximization routine. A resulting
model of a set of data may be returned by modeling request
interface 204 in response to an initial request to model the
set of data.

Generating a Density Model by Varying a Component

In one embodiment, density modeling logic on one or
more computing devices generates an initial density model
to approximate a set of data. The set of data may be raw data
that includes numerical values or may be a binned repre-
sentation of a raw set of data if the raw data includes
non-numerical values. The initial density model may include
one or a few components that may be randomly selected or
selected based on statistics such as the mean, median, and/or
mode of the data. The density modeling logic selects a
functional component to vary based at least in part on how
well the first set of functional components approximates the
value densities in the set of data. The approximation by the
first set of functional components may be evaluated based at
least in part on a likelihood or log likelihood that at least part
of the set of data is explained by the first set of functional
components.

In one embodiment, the density modeling logic generates
a first density model that approximates value densities in a
set of data. The first density model may or may not be the
initial density model and may or may not include more than
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one component. The density modeling logic then selects a
first functional component of the first set of functional
components based at least in part on how much the first
functional component contributes to how well the first set of
functional components approximates the value densities in
the set of data. The selected functional component may then
be varied and used to generate a second density model, and
the second density model may better approximate value
densities in the set of data and may be used to generate other
density models that may better approximate value densities
in the set of data.

The components may include any functions that may be
defined by variable parameters and that may describe dis-
tributions of values. For example, continuous functions such
as gaussian distribution functions may be used to model
continuous data distributions. As another example, discrete
functions such as multinomial distribution functions may be
used to model discrete data distributions. In one example,
the selected functional component is a Gaussian distribution
or bell curve centered at a specified value, such as a mean
value of the given distribution of values. The specified value
may be stored to define the bell curve. The bell curve may
also be defined according to a specified width or variance of
the bell curve and/or a specified height or magnitude of the
bell curve, if the bell curve is not normalized. The variation
of'the Gaussian distribution may be generated by varying the
location/means of the first functional component in a direc-
tion of maximum variance. In another example, the selected
functional component is a multinomial distribution having
one or more frequencies, and a variation of the multinomial
distribution may be generated by varying the one or more
frequencies.

The density modeling logic generates the second density
model comprising a second set of functional components
that includes at least one more functional component than
the first set of functional components. The second set of
functional components is determined using at least the first
functional component and a variation of the first functional
component as seed components. The second density model
may then be treated as a first density model, and the density
modeling logic may iteratively add components to the
models by selecting a component to vary and generating a
new model by using at least the selected component and the
variation as seed components. When a satisfactory resulting
density model has been generated according to these steps,
the density modeling logic may store the resulting density
model in association with the set of data. The resulting
density model may then be accessed to make predictions
about the set of data without scanning every data value in the
set of data.

In one embodiment, the seed components used for pro-
ducing a new density model also include, in addition to the
selected component and the variation of the selected com-
ponent, other component(s) that are in a same neighborhood
as the selected component. For example, the other compo-
nent(s) may be within a threshold distance of the selected
component, or within a distance that is based on the statis-
tical variance of the selected component. In a particular
example, other components that are within twice the vari-
ance of the selected component may be defined as being in
the same neighborhood. In other examples, the distance
between components may be quantified based on any func-
tion of the difference between value distributions defined by
the components.

Regardless of whether or not the seed components include
other components that are in the same neighborhood as the
selected component, the density modeling logic may deter-
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mine a second set of functional components for a new model
at least in part by determining adjusted functional compo-
nents of the second model. The adjusted components are
determined by, in an expectation step, determining relative
probabilities that the seed components contribute to how
well the second model approximates the value distributions,
and, in a maximization step, optimizing the seed compo-
nents by determining replacement seed components based at
least in part on the relative probabilities for the correspond-
ing seed components.

Tteratively Varying Components to Reach a Resulting Model

The density modeling logic may select other functional
component(s) to vary if varying the selected functional
component does not result in a satisfactory model. In one
embodiment, the density modeling logic determines an
amount of improvement that indicates how much better the
second density model approximates value densities in the set
of data than the first density model approximates the value
densities in the set of data. If the density modeling logic
determines that the amount of improvement does not satisfy
a threshold amount of improvement, the density modeling
logic may select a second, different, functional component
of the first set of functional components. The density mod-
eling logic then uses the second functional component and
a variation of the second functional component as seed
components to generate a third density model. The third
density model includes a third set of functional components
that has at least one more functional component than the first
set of functional components. The resulting density model to
approximate the set of data may be the third density model
or may be otherwise based at least in part on the third density
model. For example, the resulting density model may
include additional functional component(s) that were added
as a result of varying functional component(s) of the third
model.

In another embodiment, if the amount of improvement
does not satisfy the threshold, the density modeling logic
may, at some point optionally after attempting to vary other
component(s), stop attempting to improve the approxima-
tion of the value densities. Such further attempts may be
wasteful of resources if the amount of improvement does not
satisfy the threshold. In this embodiment, the density mod-
eling logic may retain the first density model or the second
density model as the resulting density model. In one embodi-
ment, if multiple models are similar in the quality that they
approximate the set of data, the smallest of the similar
models is retained as the final model. Larger models may be
a result of overfitting.

On the other hand, if the amount of improvement does
satisfy the threshold, the density modeling logic may
attempt to generate an even better approximation of the
value densities by selecting a second functional component
of the second set of functional components to vary. The
second functional component may be selected based at least
in part on how much the second functional component
contributes to how well the second set of functional com-
ponents approximates the value densities in the set of data.
The density modeling logic uses at least the second func-
tional component and a variation of the second functional
component as seed components to generate a third density
model. The third density model includes a third set of
functional components that includes at least one more func-
tional component than the second set of functional compo-
nents. The resulting density model that represents the set of
data may be the third density model or may be based at least
in part on the third density model.
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The density modeling logic may continue to attempt to
improve the model by adding functional components until
either a satisfactory model is reached, further attempts result
in insignificant amounts of improvement, or a maximum
number of components is reached. At each iteration of
determining whether to add a functional component, the
density modeling logic may determine whether a number of
components in the current density model is a threshold
number of components allowed for the resulting density
model. The density modeling logic may continue to add
components as long as the number of components is less
than the threshold number of components allowed. The
components to vary at each iteration may be selected based
at least in part on how much each respective functional
component contribute to how well the set of functional
components (including the respective functional compo-
nent) approximates the value densities in the set of data. At
each iteration, at least the selected components and varia-
tions of the selected components may be used to generate
new density models that include more components than the
previous density model. The resulting density model may be
determined when an iteration produces a satisfactory model,
when further attempts to improve the models result in
insignificant amounts of improvement, or when a maximum
number of components is reached. When the maximum
number of components is reached, the model that has the
maximum number of components may be retained as the
resulting density model.

An iteration may be determined to have produced a
satisfactory model when a degree of accuracy by which the
model approximates value densities satisfies a threshold
degree of accuracy. The degree of accuracy may be deter-
mined by comparing the model to one or multiple samples
of the set of data, for example, by computing whether a
likelihood or a log likelihood that the data is represented by
the model is greater than a threshold. In another embodi-
ment, the threshold is a relative improvement in the likeli-
hood or log likelihood. The relative improvement may be
judged against previous models generated in previous itera-
tions of a model generation process that includes selecting
component(s) to vary, optimizing the components to gener-
ate a model, and evaluating the generated model. Upon
determining that the degree of accuracy of the model satis-
fies the threshold, the density modeling logic may retain the
model as the resulting density model. The threshold for
determining a satisfactory model to retain may be different
than the threshold for determining whether or not a model
should be the subject of further iterations of varying com-
ponents.

In one embodiment, the density modeling logic generates
density models according to an expectation maximization
technique for estimating parameters of statistical models.
The expectation maximization technique starts with initial
parameter(s) of an initial model and iterates through a model
generation process including an expectation step, a maxi-
mization step, and an assessment or evaluation step until a
final density model has been assessed to be a satisfactory
model for the data or until the model generation process fails
to produce a significantly better model in the last iteration.
In the expectation step, the density modeling logic deter-
mines a function that describes a likelihood or log likelihood
(i.e., the natural logarithm of the likelihood) that current
parameter(s) of the current model represent the data. In the
maximization step, the density modeling logic chooses new
parameter(s) for a new model, optionally reusing
parameter(s) of the current model and optionally replacing
parameter(s) of the current model.
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In an assessment step, the density modeling logic deter-
mines how much better the new model represents the data or
a sample of the data. The density modeling logic may avoid
continuing with the new model if the new model does not
represent the data at least a threshold amount better than the
current model. If the density modeling logic avoids continu-
ing with the new model, another new model may be pro-
posed by choosing other new parameter(s), optionally reus-
ing other parameter(s) of the current model, and optionally
replacing other parameter(s) of the current model.

In one embodiment, the field grouping logic may use
density model(s) to estimate how frequently field values
should co-occur if they are independent. For example, a
density model can learn both dependent and independent
fields. Density modeling logic may generate a trivial model
(such as a model with a single component) and compare the
estimates to the raw data counts. If the estimates are good,
then the fields may be estimated to be independent.
Interface for Creating Models

In one embodiment, a density modeling interface presents
options for generating density models that represent sets of
data. The options may be presented via an application
programming interface or via a graphical display to a user.
Generation of models by the density modeling logic may be
triggered by a request or command that results from user or
application input to the density modeling interface. In one
embodiment, the density modeling interface causes con-
struction of a SQL query to invoke a SQL table function that
builds the density model.

In one embodiment, the input to the table function is a set
of rows containing data mining attributes. The table function
may also take as an input a cursor with settings that help
guide the build process. Example settings include a number
of components or a maximum number of correlated two-
dimensional (“2D”) attributes. Such inputs and settings may
be specified by default or by user or application input to the
density modeling interface.

Preparing Data for Modeling

In various embodiments, the density modeling logic may
be hosted on a single machine that executes a set of
sequential processes, or on multiple software instances on
one or multiple machines that execute processes in parallel.
For example, different software instances may process dif-
ferent portions of the data in parallel, or may perform
different phases of processing on same sets of data in
parallel. A first set of density modeling logic may perform a
first set of processes on portions of the data, and these
portions may be passed to a second set of density modeling
logic as the processing is completed, portion by portion, by
the first set of density modeling logic.

In one embodiment, in an initial data scan, the first set of
density modeling logic, which may be distributed over a
number of slaves, may record the minimum and maximum
values observed for all numerical attributes (2D and nested)
and computes the frequencies of the attribute name and
value combinations of all categorical attributes (2D and
nested). Multidimensional data such as two-dimensional
(“2D”) data, such as columns of a table, includes multiple
variables and may be stored as an array, series or collection
of data. For example, multidimensional data may be stored
in a nested column where each row includes a collection of
values such as (name, value) pairs.

The minimum and maximum numerical attributes values,
categorical frequencies, and number of rows in the first set
may be passed on to a second set of density modeling logic,
which may be hosted on same or different devices as the first
set. Data may be hashed in the second set, and the minimum
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and maximum numerical values and categorical frequencies
are aggregated. The minimum and maximum values may be
used to compute equi-width histograms in final cluster
statistics. The aggregated categorical frequencies may be
used to identify the top-N bins for each categorical attribute.
In the process of aggregation, nested column attribute lists
may also be consolidated.

Bin boundaries may be computed for each column. Col-
umns with intrinsic order (e.g., NUMBER, DATE) may be
handled by sorting the values and finding appropriate cut
points. The bin boundaries may not be strictly quantile in the
cases when the data distribution and/or the number of unique
values do not allow precise quantization. Columns without
intrinsic order (e.g., CHAR, NCHAR) may use top-N bin-
ning. Univariate column histograms may also produced in
the bin boundary computation step.

In one embodiment, data is loaded by scanning a data
table, binning the data on the fly, and storing the binned data
in memory. The binned data may then be used to compute
bivariate histograms for each column pair or to generate
models. Attribute similarity computations may be made
based on the univariate and bivariate histograms. For each
pair of attributes, the observed bivariate histogram is com-
pared to an estimate, using the corresponding univariate
histograms, based on the assumption that the variables are
independent. The pair-wise similarity estimates may then be
used to produce a global attribute similarity ranking.

The second set of density modeling logic may commu-
nicate back, to the first set of density modeling logic, the
minimum and maximum numerical values, the top-N cat-
egorical bins, the number of attributes per nested column,
and the total number of rows in the data. The nested column
attribute lists are stored in the second set. This information
may be used during the model output stage. The nested
attribute lists may be communicated back to the first set if
there are too few nested attributes in a column to carry out
meaningful projections. In this case, the nested attribute lists
may be used to create consistent mappings of subnames (and
values) to attribute ids.

Once the total number of rows is known, the first set of
density modeling logic may draw a small random sample of
the 2D data (for example, approximately 2000 rows). The
sampling is repeatable in the presence of a user provided row
identifier (case id). In the process of sampling, the 2D
categorical columns are binned using the top-N bin defini-
tions generated during the previous step.

In the second set of density modeling logic, the 2D data
sample is used to perform attribute similarity analysis.
During the attribute similarity analysis, the second set of
density modeling logic may compute quantile bin boundar-
ies for the numerical columns and/or univariate histograms
for the data columns.

After binning the sample data, the density modeling logic
computes bivariate histograms for each attribute pair and
Kullback-Leibler divergence (“KLD”) distances between
the bivariate histograms and the distribution produced by the
univariate histograms under an assumption that the univari-
ate histograms are independent. The KLLD score measures an
amount of information that is lost when one field is used to
approximate another field. In one embodiment, if the amount
of lost information is below a threshold for two fields, then
the fields may be grouped together as interdependent. On the
other hand, if the amount of lost information is above a
threshold for two fields, then the fields are not grouped
together as interdependent. In another embodiment, the
amount of lost information may be a factor in a distance
function that accounts for one or more other factors. The
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distance function may be used to determine the distance
between distributions, and fields may be grouped together if
they are within a threshold distance of each other. Pair-wise
KLD distances form a similarity matrix, and the density
modeling logic may compute a rank-weighted similarity row
average for each attribute. This quantity may be used as a
measure of global similarity. In one embodiment, only
attributes that are significantly correlated are used during a
subsequent EM model build. The user can further restrict the
attribute space to the N most correlated attributes according
to a setting on the density modeling interface.

The data sample may help the density modeling logic
determine what type of distribution is most appropriate for
modeling each numerical column (Gaussian or multivalued
Bernoulli on quantized data). Attributes, that are modeled
using Gaussian distributions, may be normalized when
automatic data preparation is turned on. The density mod-
eling logic computes the required shift and scale normal-
ization parameters on the sample.

The second set of density modeling logic may commu-
nicate to the first set of density modeling logic the computed
normalization parameters and quantile bin boundaries. In
one embodiment, only data preparation parameters that were
found to be significantly correlated are passed back to the
first set of density modeling logic. Passing a subset of the
original attributes effectively filters the data. The second set
of density modeling logic also send a list of the categorical
2D column ids that were found to be correlated.

The density modeling logic transforms the raw data by
either binning or normalizing the correlated 2D columns.
Nested columns with large number of attributes may be
projected down to lower dimensional spaces. The first set of
density modeling logic may use random projections to
generate the transformations, optionally independently by
each slave in the first set. The transformed data is then stored
by the first set of density modeling logic, and the first set of
density modeling logic may also randomly partition the data
rows into build and held-aside sets if there are a sufficient
number of rows. In one embodiment, the density modeling
logic uses the last 25% of the records as a held-aside dataset.
Overview of Expectation Maximization

In one embodiment, the density modeling logic grows an
expectation maximization model incrementally, starting
with a single or a few components. Then, the density
modeling logic adds one or a few components at a time and
evaluates whether the larger model significantly outper-
forms the smaller model. New components are initialized to
areas with poor distribution fit. The new model is retained
only if it has a better held-aside log likelihood, i.e., if the
data is better explained by the first model. If the data had too
few rows to allow the creation of a held-aside dataset, the
density modeling logic may use the Bayesian Information
Criterion (BIC criterion) as a measure of quality. If the new
model does not outperform the original model, the density
modeling logic attempts adding a new component initialized
to a different area with poor distribution fit. The search may
continue until a sufficient number of failed attempts are
made or the model reaches the maximum allowed number of
components as specified by the user setting.

Expectation Maximization (EM) is an iterative algorithm
that adjusts the model parameters to maximize the likelihood
of the build data. The algorithm performs two steps: Expec-
tation (E-step) and Maximization (M-step). The E-step com-
putes probabilistic assignments to model components given
the current model. The M-step optimizes the model param-
eters to improve the likelihood of the build data.
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To learn the EM model parameters, the density modeling
logic iteratively processes the input data. The data does not
need to be randomized or presented in any particular order.
Initially, separate models may be built for the group of 2D
correlated columns and for each nested column.

Expectation maximization logic iterates over the E-step
and the M-step until convergence. The E-step involves
scoring each row against the current model, starting with
seed components or parameters. The M-step involves com-
puting optimized model parameters based on the E-step
assignments. Each slave in the first set of density modeling
logic may include expectation maximization logic for per-
forming the E-step and a partial M-step on its set of build
rows. The E-step results are also used to compute the log
likelihood of the build data. The held-aside rows do not need
to be processed and can be skipped at this stage.

After processing all build rows at the slaves, the partial
M-step results and the log likelihood on the build data may
be passed to the second set of density modeling logic, where
the M-step results are aggregated to produce a global model
of adjusted components or parameters. The aggregated log
likelihood on the build data may be used to determine if the
model parameters have stopped changing significantly and
the algorithm has converged.

The second set of density modeling logic communicates
the global model to the first set. If the algorithm has not
converged, another iteration on the build data may be
performed. Once the algorithm converges to adjusted com-
ponents, a single E-step is performed on the held-aside data
rows to compute the log likelihood for the held-aside data
rows. For small datasets with no held-aside, the density
modeling logic performs this step on the build data and then
computes a BIC criterion on the log likelihood of the build
data.

The partial log likelihoods on the held-aside data, com-
puted by the first set of density modeling logic, are aggre-
gated to produce the global log likelihood. This global
likelihood may be used to determine if the current model has
produced a significant improvement over the previous
model.

Once the model build is completed, the density modeling
logic may next produce attribute statistics for the records
assigned to each of the adjusted components. These statistics
may be used to generate cluster details for the model
viewing stage. Generating these statistics may involve a pass
through the transformed data to compute row assignments.
Based on the row assignments, attribute statistics are col-
lected from the corresponding rows in the raw data. In
parallel execution, this work is performed locally in the first
set of density modeling logic and then aggregated in the
second set of density modeling logic.

Initial Models

The expectation maximization logic creates initial base-
line models at each slave. The initial baseline models may be
identical models with one or few component(s). For
example, the Gaussian components may be initialized with
the means and standard deviations computed from the
sample, and the Bernoulli distributions may be initialized
with bins of equal probability.

During this initial bootstrapping stage, a log likelihood (or
BIC) reference point is created from the initial baseline
models. Any more complex model should produce a better
likelihood (BIC) than the simplistic one (or few)
component(s) baseline.
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The E-Step
In the E-step, expectation logic uses the current model
parameters to compute probability assignments for each
record to the model components. Formally the E-step is
given by:

plm) = p(x; | m, 0) L

o= el 6)
Pl O = S et 1. 0
4

where m is the index of a model component, x is a data
record, and 0 is the set of model parameters.

The E-step essentially weighs the probability that the data
record X, was generated by component m, p(x,/m, 0), by the
component prior p(m). This weighted probability is then
normalized across all model components.

The computation of p(x,/m, 0) depends on the types of
distribution used to model individual data columns.

If independence is assumed among the attributes, the
overall probability of a data record is given by the product
of probabilities of individual attributes:

px;1m©)=mp(x;1m,0), where k indexes the indi-
vidual attributes.

The independence assumption holds for attributes mod-
eled by multivalued Bernoulli distributions and Gaussian
distributions with diagonal covariance matrices. In the case
of multivalued Bernoulli distributions, p(x,,/m, 0) is equal to
the probability of the histogram bin that corresponds to the
value in the data record.

In the case of Gaussian distributions with diagonal cova-
riance matrices, p(X,,/m, 0) is computed as:

(it = i)’ ]

1
plxy |m, 0) = exp(—
2rod, 205

where p,, and o,, are the parameters of the Gaussian
distribution of component m and attribute k.

To ensure stable numerical computations and prevent
underflows, the probability product is computed as a sum on
the log scale. This also avoids the computationally expen-
sive exponentiation operations.

In the case of Gaussian distributions with full covariance
matrices, correlations between attributes and p(x,/m, 0) may
be computed in one step as:

1 e~
pl; |m, 6) = exp| =5 (4 = ) Zm] o — ) |

1
QrfrIn|

where k is the number of attributes, m indexes the compo-
nents, 2, is the full covariance matrix of component m, |2 |
is the determinant, = ' is the inversion, and p, is the mean
vector of component m.

If the data has a mix of numerical and categorical attri-
butes, the expectation logic may assume independence
between the two groups. Accordingly, p(xilm, 0) may be
computed separately within each group, and the expectation
logic may multiply the results to produce the final probabil-

1ty.
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The M-Step

In the M-Step, maximization logic uses the expectation
probabilities computed in the E-step to update the EM model
parameters. Since the computations may be distributed
across slaves, the maximization logic computes partial run-
ning sums that can be easily aggregated.

The maximization logic computes partial prior updates,
p(m)* by summing the expectation probabilities for each
model component over all data records. The superscript s
indicates that the sums are within each slave and i indexes
the rows within the slave.

p(mY>=2p(mlx,0).

Updating a histogram bin value in a multivalued Bernoulli
distribution includes summing the expectation probabilities
over the data records that have that particular bin in the
attribute described by the histogram.

B =Ziexiy—P(mlx;, 6), where B, is the n™ bin fre-
quency of the m” component and k” attribute.

In one embodiment, two running sums are maintained to
update the parameters of a Gaussian distribution with a
diagonal covariance matrix, for each attribute, we maintain
tWo running sums:

Kt =2 p(mI%:,0) "X

@

(2, =2, p(mlx,, 0)*x,% where m indexes the compo-
nents, k indexes the attributes, and x,, is the k™ attribute
value in the i record.

Both means and the standard deviations may be computed
using a single pass through the data using the second
quantity.

To compute updates for the mean parameters of Gaussian
distributions with full covariances, we maintain the running
sum in equation (2).

The partial updates of the full covariance matrices include
the computation of the following matrix of running sums:

2 .5
(1) (o1 %m2)® oo (1 Xk )
2 .5
K %m2) () - (G2 X )
2 s
ok Xont ' Xk Xem2)® o (i)

where m indexes the components, and K is the number of
attributes modeled by the Gaussian distribution and an
element of the matrix is given by:

(XpiXun) =20 (m1%;,0)*x 3%, where k and n index
two different attributes.

Computing Partial Likelihoods

As the expectation maximization logic computes the
E-step probabilities and M-step partial results, the expecta-
tion maximization logic also evaluates the log likelihood of
the build data. The log likelihood is a summary statistic that
quantifies how well the underlying data is modeled by the
parametric EM model. The log likelihood is defined as:

LLOx)'=2Zp(x;10)=2.%,, In(p(m)*p(x;Im,0)), where i
indexes the data rows, m indexes the compo-
nents, and p(m) is the current model prior.

®
Monitoring the value of the log likelihood statistic pro-
vides one of EM’s convergence criteria—if the log likeli-
hood does not significantly improve over an iteration, the
algorithm exits the E-step/M-step iterative loop.
Held-aside data does not get processed during the primary
E-step and M-step iterations. However, once convergence is
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achieved, a single E-step through is performed on the
held-aside data to compute the log likelihood of the held-
aside data. This value is used to independently evaluate the
new model quality and prevent overfitting. The computation
in equation (3) is used to compute the log likelihood, and the
summation goes over the held-aside rows.

In one embodiment, when the expectation maximization
logic uses a held-aside validation set to monitor model
improvement and when a unique identifier is not available
for rows of the binned data, the rows may be hashed to
achieve a pseudo-random data split into training and vali-
dation data. In one embodiment, the density modeling logic
uses a two-level hashing approach. The first level randomly
partitions the data in half. One of the halves is passed
through a second hash to split it further into two parts. This
results in a training set and a validation set split.

Special treatment may be given to repeated rows in the
data. The described two-level hashing may place all identi-
cal rows in the same partition. To avoid that scenario, the
density modeling logic may keep track of the hash collisions
and alternate the partition assignment. A hash table may be
maintained for each hash function. The key is the hashed
value. To keep track of collisions, the density modeling logic
stores an assignment value (0 for training set and 1 for
validation set). When a collision occurs, the density mod-
eling logic looks up the last assignment, assigns the row to
the other partition, and updates the last assignment value.
This results in a random partition of the identical rows
between the training and the validation sets.

Finally, the density modeling logic may re-order the 2D
pointers to the individual rows in the build data, so that the
first of the rows represent the training data and the last of the
rows represents the validation data.

When held-aside data does not exist, the expectation
maximization logic uses the build data instead. The build
data log likelihood may be converted in a BIC score.

The expectation maximization logic also quantifies the
contribution of individual components to the global log
likelihood. This measure allows the density modeling logic
to grow the model in areas of poor fit. The partial contri-
butions of the individual components Q,, are given by:

Oy =Zp(m)*p(x;1m,8))*p (m|x;,0) Q)

The expectation maximization logic may output the fol-
lowing types of information: partial prior updates; partial
multivalued Bernoulli histogram updates; partial Gaussian
mean updates; partial Gaussian covariance updates; and
partial log likelihood statistics.

Adding Model Components

In one embodiment, density modeling logic aggregates
the partial parameter updates and log likelihoods computed
by the slaves and guides the EM model search. Guiding the
EM model search may include monitoring convergence
conditions, evaluating model quality, and adding or rejecting
new model components.

A parameter aggregation step may follow each E-step/M-
step iteration. In the parameter aggregation step, the sum of
partial priors p(m)® aggregated across priors may be scaled
by the total number of records N.

pm)=Z. p(m)*/N.

The sum of partial bin frequencies f,,,” is scaled by the
product of the total number of records and the newly
computed component prior.

Brtr=Z B (N*p(m)).

To avoid ordering the sequence of aggregation, the den-
sity modeling logic may initially compute the summation
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(numerator). Once all aggregations are complete, the density
modeling logic may divide by the denominator.

The same staged computation may apply to the Gaussian
mean and covariance aggregations.

For Gaussian means, the sum of partial bin frequencies
X, 18 scaled by the product of the total number of records
and the newly computed component prior.

Wyt =Z i/ (N ¥p(m))

The Gaussian covariance parameters may be computed
as:

(Xomk # Xonn)*
o~ Mmk #Hmns

N« p(m)

2
U'mkn—z
s

where (X,,.*X,,,,)" is the sum of partial covariances aggre-
gated across slaves and 1, and v, are the newly computed
means for attributes k and n in component m.

The partial log likelihood sums may be aggregated across
slaves. If the change in log likelihood from the previous
E-step/M-step iteration is less than 0.001% or some other
threshold value, the algorithm has converged. If the number
of iterations has exceeded the maximum number of allowed
iterations, the algorithm also terminates. If neither conver-
gence criterion has been met, a new E-step/M-step may be
initiated.

The EM model may be grown incrementally by adding
one or a few component(s) at a time and training the model
using the primary EM algorithm. After the algorithm has
converged, density modeling logic evaluates if the larger
model significantly outperforms the original model. The
density modeling logic may keep adding components until
either the EM model stops showing improvement or the
maximum number of components is reached. The density
modeling logic adds new components in areas with poor
distribution fit.

The density modeling logic may replace a component
with poor fit by two new components. The new components
are initialized with the parent distributions with slight per-
turbation to break the symmetry.

In one embodiment, the density modeling logic monitors
the improvement in log likelihood on the held-aside dataset,
and the density modeling logic may accept a new model
component only if the density modeling logic detects a
reasonable improvement in log likelihood. In one embodi-
ment, the improvement must be greater than a threshold
value such as 0.1%.

When there are too few rows to perform a split, such as
500 or fewer rows, the density modeling logic may use BIC
regularization to penalize the increase in model size:

BIC=-2*LL*k*In(N), where k is the number of model
parameters, and N is the number of rows. A lower BIC value
indicates a better model.

In one embodiment, the density modeling logic chooses
which component to split into two new components based
on its individual contribution to the log likelihood Q,, (see
equation 4). The component with smallest contribution may
be used for the split. If the top choice does not produce an
improvement, the next component on the list may be used
for splitting. Each component may be visited only once, and
components where the split failed are marked as non-
splittable. The search for a better model may be limited to a
threshold number of bad splits, such as 5, after which the
model search terminates.
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To facilitate reversal of bad splits, the density modeling
logic stores a copy of the previous model. If the new model
does not produce an improvement, the new model is dis-
carded and the previous model is restored.

The stored model size may be determined by the number
of components (n), number of attributes (m), and the number
of bins (k). The attributes can be subdivided into three
groups: attributes using multivalued Bernoulli distributions
(m,), attributes using Gaussian distributions with diagonal
covariance matrices (m,,), and attributes using Gaussian
distributions with full covariance matrices attributes (m,).
The total model size may involve the storage of n*(1+m,*k+
2*m, Am +m,*(m,+1)/2) double precision values.

Once the model search is complete, the final or resulting
model may be distributed to the slaves, stored, or returned in
response to a request for a resulting model for the underlying
dataset. The output of this stage is an EM model. This model
is either the result of aggregation of the partial M-step
parameter updates or is a model with a newly split compo-
nent.

Storage and Use of the Resulting Model

The resulting model may be stored in association with a
data set that the model represents. If the data is distributed
among multiple devices, the resulting model may be dis-
tributed to the multiple devices for use at any of the devices.
The distributed devices may use the resulting model to make
predictions about the set of data without requiring a scan or
analysis of individual records in the set of data.

Analysis of the set of data using the resulting model may
include estimating how many rows will be eliminated by
predicate(s) in a query, and/or how many rows will be
fetched by a query after the application of the predicate(s).

The resulting model may also be used to create visual-
izations of data clusters. Because the resulting model
approximates value distributions in the underlying data, the
peaks and other clusters of data in the resulting model are
likely to correspond with clusters of data in the underlying
dataset.

The resulting model may be used in any situation that
would otherwise require access to the underlying dataset,
except in circumstances where exact determinations need to
be made about the underlying dataset. The resulting model
will often consume significantly less space to store and
significantly less processor time and memory to analyze
because the resulting model is merely a function that rep-
resents the underlying data and does not include the under-
lying data itself.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.
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For example, FIG. 3 is a block diagram that illustrates a
computer system 300 upon which an embodiment of the
invention may be implemented. Computer system 300
includes a bus 302 or other communication mechanism for
communicating information, and a hardware processor 304
coupled with bus 302 for processing information. Hardware
processor 304 may be, for example, a general purpose
Mmicroprocessor.

Computer system 300 also includes a main memory 306,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 302 for storing information
and instructions to be executed by processor 304. Main
memory 306 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 304. Such instruc-
tions, when stored in non-transitory storage media acces-
sible to processor 304, render computer system 300 into a
special-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 300 further includes a read only
memory (ROM) 308 or other static storage device coupled
to bus 302 for storing static information and instructions for
processor 304. A storage device 310, such as a magnetic
disk, optical disk, or solid-state drive is provided and
coupled to bus 302 for storing information and instructions.

Computer system 300 may be coupled via bus 302 to a
display 312, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 314, includ-
ing alphanumeric and other keys, is coupled to bus 302 for
communicating information and command selections to
processor 304. Another type of user input device is cursor
control 316, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 304 and for controlling cursor
movement on display 312. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., x) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.

Computer system 300 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 300 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 300 in response to
processor 304 executing one or more sequences of one or
more instructions contained in main memory 306. Such
instructions may be read into main memory 306 from
another storage medium, such as storage device 310. Execu-
tion of the sequences of instructions contained in main
memory 306 causes processor 304 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 310. Volatile media includes dynamic
memory, such as main memory 306. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with
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patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates in transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 302. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be involved in carrying one
or more sequences of one or more instructions to processor
304 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 300 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 302. Bus 302 carries the data to main memory
306, from which processor 304 retrieves and executes the
instructions. The instructions received by main memory 306
may optionally be stored on storage device 310 either before
or after execution by processor 304.

Computer system 300 also includes a communication
interface 318 coupled to bus 302. Communication interface
318 provides a two-way data communication coupling to a
network link 320 that is connected to a local network 322.
For example, communication interface 318 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
318 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 318 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.

Network link 320 typically provides data communication
through one or more networks to other data devices. For
example, network link 320 may provide a connection
through local network 322 to a host computer 324 or to data
equipment operated by an Internet Service Provider (ISP)
326. ISP 326 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 328. Local
network 322 and Internet 328 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 320 and through communication interface 318,
which carry the digital data to and from computer system
300, are example forms of transmission media.

Computer system 300 can send messages and receive
data, including program code, through the network(s), net-
work link 320 and communication interface 318. In the
Internet example, a server 330 might transmit a requested
code for an application program through Internet 328, ISP
326, local network 322 and communication interface 318.

The received code may be executed by processor 304 as
it is received, and/or stored in storage device 310, or other
non-volatile storage for later execution.

As used herein, the terms “first,” “second,” “third,”
“fourth,” and “particular” are naming conventions that are
used to introduce and reference members of a set of items.
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Unless otherwise expressly indicated, these terms are not
intended to provide any ordering information about the
members in the set. For example, a “first” item may or may
not be at a beginning of a set of items, and may or may not
be before a “second” item in the set, even if the set is referred
to as a “list” or some other ordered arrangement of items.

To the extent that any steps are provided herein, an order
that the steps are written is not necessarily an order that the
steps are performed unless a later listed step is actually
dependent on an earlier listed step or unless a particular
ordering is expressly required. For example, a later listed
step that uses or stores A may be dependent on an earlier
listed step that receives or generates A but not necessarily on
another earlier listed step that also uses or stores A. There-
fore, the later listed step may be performed after one of the
earlier listed steps but not necessarily after both of the earlier
listed steps.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

What is claimed is:

1. A method comprising:

generating a first density model that approximates value
densities in a set of data, wherein the first density model
comprises a first set of functional components;

iteratively generating at least one additional density
model comprising a second density model, wherein
generating the second density model comprises:

selecting a first functional component of the first set of
functional components based at least in part on how
much the first functional component contributes to how
well the first set of functional components approxi-
mates the value densities in the set of data,

generating a variation of the first functional component,
and

generating the second density model comprising a second
set of functional components, wherein the second set of
functional components includes at least one more func-
tional component than the first set of functional com-
ponents, and wherein the second set of functional
components is determined using at least the first func-
tional component and the variation of the first func-
tional component as seed components;

storing, in association with the set of data, a resulting
density model selected from the at least one additional
density model;

wherein the method is performed by one or more com-
puting devices.

2. The method of claim 1, wherein iteratively generating

the at least one additional density model further comprises:

determining an amount of improvement that indicates
how much better the second density model approxi-
mates the value densities in the set of data than the first
density model approximates the value densities in the
set of data;

based at least in part on determining that the amount of
improvement does not satisfy a threshold amount of
improvement:
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selecting a second functional component of the first set of
functional components, wherein the second functional
component is different than the first functional compo-
nent; and
generating a third density model comprising a third set of
functional components, wherein the third set of func-
tional components includes at least one more functional
component than the first set of functional components,
and wherein the third set of functional components is
determined using at least the second functional com-
ponent and a variation of the second functional com-
ponent as seed components;
wherein the at least one additional density model com-
prises the third density model.
3. The method of claim 1, wherein iteratively generating
the at least one additional density model further comprises:
determining an amount of improvement that indicates
how much better the second density model approxi-
mates the value densities in the set of data than the first
density model approximates the value densities in the
set of data;
based at least in part on determining that the amount of
improvement does not satisfy a threshold amount of
improvement, stop iteratively generating the at least
one additional density model.
4. The method of claim 1, wherein iteratively generating
the at least one additional density model further comprises:
determining an amount of improvement that indicates
how much better the second density model approxi-
mates the value densities in the set of data than the first
density model approximates the value densities in the
set of data;
based at least in part on determining that the amount of
improvement satisfies a threshold amount of improve-
ment:
selecting a second functional component of the second
set of functional components based at least in part on
how much the second functional component contrib-
utes to how well the second set of functional com-
ponents approximates the value densities in the set of
data; and
generating a third density model comprising a third set
of functional components, wherein the third set of
functional components includes at least one more
functional component than the second set of func-
tional components, and wherein the third set of
functional components is determined using at least
the second functional component and a variation of
the second functional component as seed compo-
nents;
wherein the at least one additional density model com-
prises the third density model.
5. The method of claim 1, wherein iteratively generating
the at least one additional density model further comprises:
determining whether a number of components in the
second density model is a threshold number of com-
ponents allowed for the resulting density model;
based at least in part on determining that the number of
components in the second density model is less than the
threshold number of components:
selecting a second functional component of the second
set of functional components based at least in part on
how much the second functional component contrib-
utes to how well the second set of functional com-
ponents approximates the value densities in the set of
data; and
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generating a third density model comprising a third set
of functional components, wherein the third set of
functional components includes at least one more
functional component than the first set of functional
components, and wherein the third set of functional
components is determined using at least the second
functional component and a variation of the second
functional component as seed components;
wherein the at least one additional density model com-
prises the third density model.

6. The method of claim 1, wherein iteratively generating
the at least one additional density model further comprises:

determining whether a number of components in the

second density model is a threshold number of com-
ponents allowed for the resulting density model;
based at least in part on determining that the number of
components in the second density model meets the
threshold number of components, stop iteratively gen-
erating the at least one additional density model.
7. The method of claim 1, further comprising:
determining a degree of accuracy or relative degree of
improvement by which the second density model
approximates the value densities in the set of data;

wherein storing the resulting density model comprises
storing the second density model based at least in part
on determining that the degree of accuracy or relative
degree of improvement satisfies a threshold.

8. The method of claim 1, wherein the seed components
also include one or more other components in a neighbor-
hood of the first functional component, and wherein deter-
mining the second set of functional components comprises
determining adjusted functional components of the second
density model by determining, in an expectation step, how
much the seed components contribute to how well the
second density model approximates value distributions, and,
in a maximization step, updated seed components based at
least in part on how much of at least part of the set of data
is attributable to the seed components.

9. The method of claim 1, wherein determining the second
set of functional components using at least the first func-
tional component and the variation of the first functional
component as seed components comprises determining
adjusted functional components of the second density model
by determining, in an expectation step, how much the seed
components contribute to how well the second density
model approximates value distributions, and, in a maximi-
zation step, updated seed components based at least in part
on how much of at least part of the set of data is attributable
to the seed components.

10. The method of claim 1, wherein the set of data
comprises a binned representation of a raw set of data that
comprises non-numerical values.

11. The method of claim 1, wherein the first functional
component is a Gaussian distribution centered at a specified
value, and wherein the variation of the first functional
component is generated by varying a location parameter of
the first functional component in a direction of maximum
variance.

12. The method of claim 1, wherein the first functional
component is a multinomial distribution comprising one or
more frequencies, and wherein the variation of the first
functional component is generated by varying the one or
more frequencies of the multinomial distribution.

13. The method of claim 1, wherein how well the first set
of functional components approximates the value densities
in the set of data is measured based at least in part on a
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likelihood that at least part of the set of data is explained by
the first set of functional components.
14. One or more non-transitory storage media storing
instructions which, when executed by one or more comput-
ing devices, cause:
generating a first density model that approximates value
densities in a set of data, wherein the first density model
comprises a first set of functional components;

iteratively generating at least one additional density
model comprising a second density model, wherein
generating the second density model comprises:

selecting a first functional component of the first set of
functional components based at least in part on how
much the first functional component contributes to how
well the first set of functional components approxi-
mates the value densities in the set of data,

generating a variation of the first functional component,
and

generating a second density model comprising a second

set of functional components, wherein the second set of
functional components includes at least one more func-
tional component than the first set of functional com-
ponents, and wherein the second set of functional
components is determined using at least the first func-
tional component and the variation of the first func-
tional component as seed components;

storing, in association with the set of data, a resulting

density model selected from the at least one additional
density model.

15. The one or more non-transitory storage media of claim
14, wherein iteratively generating the at least one additional
density model further comprises:

determining an amount of improvement that indicates

how much better the second density model approxi-
mates the value densities in the set of data than the first
density model approximates the value densities in the
set of data;

based at least in part on determining that the amount of

improvement does not satisfy a threshold amount of

improvement:

selecting a second functional component of the first set
of functional components, wherein the second func-
tional component is different than the first functional
component; and

generating a third density model comprising a third set
of functional components, wherein the third set of
functional components includes at least one more
functional component than the first set of functional
components, and wherein the third set of functional
components is determined using at least the second
functional component and a variation of the second
functional component as seed components;

wherein the at least one additional density model com-

prises the third density model.

16. The one or more non-transitory storage media of claim
14, wherein iteratively generating the at least one additional
density model further comprises:

determining an amount of improvement that indicates

how much better the second density model approxi-
mates the value densities in the set of data than the first
density model approximates the value densities in the
set of data;

based at least in part on determining that the amount of

improvement does not satisfy a threshold amount of
improvement, stop iteratively generating the at least
one additional density model.
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17. The one or more non-transitory storage media of claim
14, wherein iteratively generating the at least one additional
density model further comprises:

determining an amount of improvement that indicates

how much better the second density model approxi-
mates the value densities in the set of data than the first
density model approximates the value densities in the
set of data;

based at least in part on determining that the amount of

improvement satisfies a threshold amount of improve-

ment:

selecting a second functional component of the second
set of functional components based at least in part on
how much the second functional component contrib-
utes to how well the second set of functional com-
ponents approximates the value densities in the set of
data; and

generating a third density model comprising a third set
of functional components, wherein the third set of
functional components includes at least one more
functional component than the second set of func-
tional components, and wherein the third set of
functional components is determined using at least
the second functional component and a variation of
the second functional component as seed compo-
nents;

wherein the at least one additional density model com-

prises the third density model.

18. The one or more non-transitory storage media of claim
14, wherein iteratively generating the at least one additional
density model further comprises:

determining whether a number of components in the

second density model is a threshold number of com-

ponents allowed for the resulting density model;

based at least in part on determining that the number of

components in the second density model is less than the

threshold number of components:

selecting a second functional component of the second
set of functional components based at least in part on
how much the second functional component contrib-
utes to how well the second set of functional com-
ponents approximates the value densities in the set of
data; and

generating a third density model comprising a third set
of functional components, wherein the third set of
functional components includes at least one more
functional component than the first set of functional
components, and wherein the third set of functional
components is determined using at least the second
functional component and a variation of the second
functional component as seed components;

wherein the at least one additional density model com-

prises the third density model.

19. The one or more non-transitory storage media of claim
14, wherein iteratively generating the at least one additional
density model further comprises:

determining whether a number of components in the

second density model is a threshold number of com-

ponents allowed for the resulting density model;
based at least in part on determining that the number of

components in the second density model meets the
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threshold number of components, stop iteratively gen-
erating the at least one additional density model.

20. The one or more non-transitory storage media of claim
14, wherein the instructions, when executed, further cause:

determining a degree of accuracy or relative degree of
improvement by which the second density model
approximates the value densities in the set of data;

wherein storing the resulting density model comprises
storing the second density model based at least in part
on determining that the degree of accuracy or relative
degree of improvement satisfies a threshold.

21. The one or more non-transitory storage media of claim
14, wherein the seed components also include one or more
other components in a neighborhood of the first functional
component, and wherein determining the second set of
functional components comprises determining adjusted
functional components of the second density model by
determining, in an expectation step, how much the seed
components contribute to how well the second density
model approximates value distributions, and, in a maximi-
zation step, updated seed components based at least in part
on how much of at least part of the set of data is attributable
to the seed components.

22. The one or more non-transitory storage media of claim
14, wherein determining the second set of functional com-
ponents using at least the first functional component and the
variation of the first functional component as seed compo-
nents comprises determining adjusted functional compo-
nents of the second density model by determining, in an
expectation step, how much the seed components contribute
to how well the second density model approximates value
distributions, and, in a maximization step, updated seed
components based at least in part on how much of at least
part of the set of data is attributable to the seed components.

23. The one or more non-transitory storage media of claim
14, wherein the set of data comprises a binned representation
of a raw set of data that comprises non-numerical values.

24. The one or more non-transitory storage media of claim
14, wherein the first functional component is a Gaussian
distribution centered at a specified value, and wherein the
variation of the first functional component is generated by
varying a location parameter of the first functional compo-
nent in a direction of maximum variance.

25. The one or more non-transitory storage media of claim
14, wherein the first functional component is a multinomial
distribution comprising one or more frequencies, and
wherein the variation of the first functional component is
generated by varying the one or more frequencies of the
multinomial distribution.

26. The one or more non-transitory storage media of claim
14, wherein how well the first set of functional components
approximates the value densities in the set of data is mea-
sured based at least in part on a likelihood that at least part
of the set of data is explained by the first set of functional
components.



